
1

Interaction and Navigation Pattern Checklist
Modern user interface stacks provide a platform for a wide variety of patterns for user interaction. Even older platforms

have more options than most development teams have traditionally used.

This list provides a starting point to find an appropriate interaction/navigation pattern during a design process. Typically,

the list should be scanned for candidates that might work well for a particular application or function within an

application. For some domains, there is only one obvious candidate. For others, there might be several, and part of the

design/prototyping process should be used to try out the possibilities and choose the right one.

Many business applications will need several of these patterns, with different functions needing different patterns, and

with one pattern chosen for the main “shell” navigation pattern.

Option list or menu
Option lists have been used since the beginning of software on video terminals. A menu is an example of an option list.

Here are some of the typical forms of option list:

Standard menu
A standard “top of the screen” menu, such as the File | Edit

| Windows | Help menu is probably the most common

example of this pattern. It evolved from older examples of

the pattern, such as cascading lists, in which a master list of

options was displayed, and choosing an option brought up

another list which was a sub-menu.

Hierarchical tree
A File | Edit | Windows | Help menu is actually hierarchical

in structure, but it is sometimes supplemented or replaced

with a tree-based set of options, often on the left side of

the screen.

“Hamburger” menu
The Windows 10 equivalent of the File | Edit | Windows |

Help pattern is the “hamburger” menu. It is so named

because of the stack of three bars in the upper left corner.

By convention, each menu item has an icon and a text

description.

Simple hamburger menus are also used on many mobile

platforms, such as Android. They work well with touch

screens, and with screens of limited size. A standard

capability to work with small screens is a collapse function.

Touching the hamburger stack causes the menu to collapse

to just icons, or if collapsed, to expand and show the full

labels.

2

Hamburger menus on desktop applications often show all the time. By contrast, hamburger menus on mobile devices

often only show when you press the hamburger icon.

Simple List
For simple applications, often on mobile platforms, no hierarchy of options is

necessary. Only a simple list is needed. Here is an example

Dynamically filtered lists
Another option list variant is the list which can be dynamically filtered by the user.

This pattern is useful in cases where there are too many options for a manageable

single list, but it is undesirable or technically difficult to use a hierarchical tree, as in a

mobile application.

Several of the options above can have filters. It is common in desktop applications,

for example, for a hamburger menu to have a search/filter capability.

Indications Cautions
• App is simple

• App needs to comform to expected
conventions

• Options loaded are highly dynamic and
unpredictable

• You’re too lazy to go through the rest of
the possibilities and decide which one
really fits the users’ task flow

• Respect Hick’s Law: Long lists of options slow down the user

• Mitigation options

• Dynamic filtering

• “Find” searching

• Favorites

• Most recently used options

• Role-based subsets

Launchpad
The next most commonly seen pattern for options is the Launchpad. The desktops for Windows, Macintosh, iPad, and

many other platforms are obvious examples. Other descriptions for the Launchpad pattern that you may have seen

include “springboard” or “hub and spoke”.

There are several variations on the Launchpad, based on the type of item being “launched”.

App centric Launchpad
Some desktops, such as the Windows 8 desktop and the iPad desktop, are app centric, which means the only or

predominant type of item is a means to launch an application. This pattern can also be seen in some business systems,

where a single shell is used for multiple applications. In that case, the business system may have an initial launch pad to

allow the user to choose the application they wish to use.

3

Action centric LaunchPad
Some applications use an action centric launch

pad, in which the items launched are actions

within a single application. A good example is

from the screen video capture program,

Camtasia:

Entity centric LaunchPad
Within an application, navigation can be entity centric if the work process depends heavily upon entities. The StaffLynx

app, shown as an example in the course, uses an entity-centric Launchpad at the bottom of the screen.

4

Gallery (Document/media centric Launchpad)
A cousin to the entity-centric Launchpad is a gallery, in which documents or other

items are selected and “launched”. A typical Windows Explorer window that

displays icons for documents would be an example. Many image editing

applications have a document centric Launchpad. Here is an example of a gallery

to navigate books on the Kindle Fire, shown on the right:

Indications Cautions
• You want immediate

familiarity

• Dynamically loaded options
with no categorization

• Desire to conform to
platform metaphor

• Making your app’s
control screen look
like Windows 8
desktop

• Include enough difference that
your app control screen is easy to
distinguish from platform desktop

• Respect Hick’s Law

• On launchpads, that often
means allowing
configurability by users to
include/exclude options

• Again, nothing wrong with a
Find capability

Wizard
Most developers are quite familiar with wizards, so no additional description is warranted here.

The Wizard pattern is most often used either for relatively inexperienced users, for tasks that are done very

infrequently, or for highly complex tasks that have a very linear workflow. Multiple steps, with or without branching

Common example in the web world: checkout process

Some features are present on almost all wizards, including a progress indicator and elements for back/next navigation.

Master-detail
The master-detail navigation pattern means allowing the user to navigation based on the structure and relationships in

the data. For example, choosing a customer first, and then choosing an order for that customer.

Drill-down
The most common sub-type in this pattern is drill-down. The difference in drill-down from routine master detail is that

the user has more control over what kind of information is displayed next. For example, they might select a customer,

and then have the option of selecting one of several child collections for a customer, such as orders, support calls, or

payment history.

Indications Cautions
• Users are quite familiar with data

structures

• User path through the data structure is
unpredictable

• Often coupled with search capability to manage the amount
of data navigated

• Often need a “Find” capability to search within currently
fetched data

• “Collapse all” or return to root shortcut is usually helpful

5

Forward / back linear nav
This pattern is familiar to virtually every user you have, because it is used in modern browsers. The pattern can also be

helpful in your own application if it is content-centric and consumption oriented. It is usually not a good idea for

applications that have a lot of data entry, and is less useful when the information presented is highly structured.

A variant of linear nav is to have a “back” button in the upper left corner of your application, which takes the user to the

previously-viewed screen. This is often used in master detail or drilldown scenarios to navigate levels of the data.

Breadcrumb
Another pattern useful with drill down or other hierarchical navigation is the breadcrumb pattern. Usually shown at the

top of a view, it shows the levels in the hierarchy that were used to get to the present screen. Usually the levels are

clickable, allowing a user to navigate to any previous place in the hierarchy with a single click.

Indications Cautions
• Users are quite familiar with the

hierarchy involved

• User path through the data structure is
unpredictable

• Some users can become confused with too many levels

• The breadcrumb “names” should be clear to the user

6

Edit/production view
Most developers see this pattern several hours a day, in the form of Visual Studio. A wide variety of applications use it,

with the common thread being that the user is involved in some sort of editing, design, or production task. Editors,

spreadsheets, and programs that do visual layout are all in this genre. A typical example would be CorelDraw:

Indications Cautions
• User needs detailed control over layout

• Including choice of elements to lay out

• Task flow extremely hard to predict

• Users must tolerate long learning process

• Requires lots of design for the “panes”

7

Spreadsheets
It’s worthwhile to single out spreadsheets from this category. The spreadsheet or data grid pattern is commonly used in

business applications, and sometimes over-used.

The chief characteristics of the spreadsheet pattern are a flat data structure (rows and columns only), and cell-based

editing.

Indications Cautions
• You need flexible sort capability

• You need users to have some control over what
they view via drag/drop of columns

• Your users are accountants

• You are too lazy to create a better way to show
and change data

• Don‘t do one out of laziness

• Consider a card-view for detail

• Modern UI includes data templating capability
that works better for the majority of scenarios

• If you do use spreadsheet navigation in a XAML
app, you can do data templating of cells

Context switchers
The context switcher pattern allows some means of navigation between a number of different views. The maximum

number of views for this pattern to work well is 4-10, depending on screen size, type of user, etc.

The most common context switcher used in business application is a tab control. Each view has a tab, and the navigation

is accomplished by clicking on the tab. Tabs are often at the top, but for many layouts, tabs on the side work better, as

shown below:

8

A variant of the tab control for Windows 10 / UWP is the Pivot. It has mostly the same dynamics as a classic tab control,

but has better touch capabilities and built-in interaction animations.

Other context switchers include a panorama, in which the views are “swished” in a cycle, and a carousel, in which bits of

all the views are shown, but one view is in front and predominant. Here is a panorama-based app on the Windows

Phone:

The panorama pattern was once common on touch based tablet and phone apps, but has fallen out of favor in the last

few years. It works well up to five or six “panels”, or perhaps a bit more on a tablet. Too many panels cause the user to

need to swipe too much for the later panels. A variation on the pattern puts context switching capability as part of an

app header (similar to a Pivot), so that every panel has a place to use for immediate access.

9

Indications Cautions
• Application has several categories of functionality

that are mostly unrelated

• Or application has too much data for one screen
and must categorize data elements

• You wish to use most of the screen for the mode
of functionality the user wants right now

• For data entry apps, changes on hidden views
should be easy to find

• Don’t use as an excuse to cram too much data
into an application

Toolbar / Ribbon
Options on a toolbar or ribbon are usually action oriented, and are primarily for interaction, not navigation. I have seen

exceptions in which they were used for navigation; I can’t say I was impressed with most of those designs.

There are exceptions to that, however. For example, Powerpoint uses its toolbar for navigation to master views. In that

case, since the app requires very minimal navigation/context switching, doing the small amount needed on the toolbar

works reasonably well.

Ribbons and toolbars are often associated with a contextual element, such as a document or view. When you use one, it

should be absolutely clear which document or view the ribbon or toolbar affects.

As with other patterns encompassing long lists of options, some sort of search or filter function can make a toolbar more

effective. The Office ribbon has been dramatically improved in recent versions with the additions of the “Tell me what

you want to do” entry box just above the ribbon.

Dashboard
The dashboard usually combines data visualization with some navigation ability. Drill down on the data is one common

navigation option, but a dashboard might also contain an option list (of work items, for instance). Here are a couple of

visual examples:

10

Dashboards may be static, with a predetermined layout, or dynamic, in which the users have some control over which

panes appear and how they are laid out in relation to one another. Dynamic dashboards make an application more

flexible to a wider range of user, but require more design and development. When implementing a dynamic dashboard,

it’s a good idea to have a default configuration that is useful to a large subset of your users.

11

Queue
One of the most underused navigation patterns is the queue. This navigation pattern can have a dramatic impact on

user productivity if the workflow is a good match for a queue.

There are two main variations of queues. Either the next item to work on is determined automatically for user, or user

chooses from a small list over which they have limited or no control. I usually refer to these types as “push queues” and

“pull queues”, respectively.

Examples of good scenarios for a queue:

• A pharmacist approving prescriptions for other workers to pack and distribute.

• A customer service representative handling issues filed by customers

• A salesperson working with prospective deals or customers

Indications Cautions
• Highly structured and repetitive workflow

• Multiple users working with same set of
pending items

• Build in forgiveness

• User gets in rhythm and it’s easy to finish/accept an
item just as realization hits that something is
incorrect or questionable

• Don’t use confirmation instead

• “Are you sure?” will quickly become ignored

Queuing architecture
The queue navigation/interaction pattern usually has wider impact on overall architecture of the application than other

patterns. For example, the choice of queuing technology can influence what user can do, and therefore the queuing

technology might need to be chosen based on how this pattern is implemented in the application.

The architect should be familiar with architectural patterns such as a “dispatch queue”. Items tend to move from one

queue to another in a workflow. The brute force way to do that is some code to do direct routing from one queue to

another. A better architecture for all but the simplest cases is to have a central queue where every item goes when its

last queue was finished with it. There, a central rules engine can decide what queue it goes to next, and can even spawn

additional queue items if needed (as when an approved order needs to route multiple item shipment work items).

12

Configurator
 A configurator features

multiple, independent

options affecting a

visualizable object. Here

is a typical screen

A configurator is

conceptually similar to

an edit/production view.

However, where

edit/production views

are typically aimed as

users who will endure a

substantial training time,

a configurator is usually

aimed at first time or

casual users. Thus it

must be considerable

simpler than an edit/production view pattern, and it usually has far fewer options for the user to access. It also often

dispenses with any drag/drop or direct editing in the designer view, whereas an edit/production view will usually include

those features.

Timeline
Anyone who has used Outlook or a similar program is familiar with a timeline. Whenever the items being manipulated

have a significant time-sensitive aspect, a timeline should be considered as a navigation pattern.

Timelines can be difficult to implement. Most platforms offer third party “controls” that do much of the work.

Don’t forget that timelines can have a horizontal layout. Since Outlook has a vertical layout for the timeline, it’s easy to

fall into the default of using that layout for all timelines. But depending on the nature of the data, a horizontal timeline

can work better, especially on touch-based systems. Video editing software is an example where a horizontal timeline is

usually used.

Metaphor
With the Metaphor interaction pattern, the interface resembles something familiar in the real world. When done well,

that can make an interface intuitively obvious to first-time users. Here is the notepad app on the original iPad:

13

This picture could be mistaken at first glance for a real notebook.

It’s possible to go overboard in a metaphor, and include unnecessary details from the real-world equivalent. This is

sometimes called a “skeuomorph”. However, the essence of using this navigation pattern is that the metaphor makes

the interaction intuitive to a first time user. You should normally only include enough detail for the metaphor to be

obvious and intuitive.

Skeuomorphic metaphor designs have fallen out of favor in recent years. If you use one today, your users may consider

it obsolete or even cheesy.

Map
The Map pattern applies when working with items laid out in the real world. Certainly geographical layout applies, and

the various Internet mapping options show this pattern in use. But it can be used in more restricted ways too. For

example, an application might use the layout of hospital rooms on a floor to allow the nurses to navigate among

patients, or a warehouse app might use a map of the warehouse to allow the use to select the desired location of an

item.

You have used a non-geographical example of the Map pattern in working with Windows:

14

The appearance of the screens is associated with both the size and position of the real-world monitors that show them.

This makes it easy for the user to just drag things around until the virtual arrangement of screens matches the real-world

arrangement of screens.

Viewport
Geographical mapping applications on the Internet, such as Google Maps and Bing Maps, show another

navigation/interaction pattern than can be an excellent fit for certain less common scenarios – the Viewport. The

Viewport pattern typical has these characteristics:

• Interaction area is larger than the screen

• User can pan to reposition the “viewport” (screen) onto the section they want

• Zooming often also supported

Besides maps, certain types of data visualization can effectively use viewports, with the user panning to find the desired

data and then zooming to drill down for detail.

This pattern works very well in a touch environment, because of the ready access of gestures for panning and zooming.

Combining interaction/navigation patterns
These navigation patterns are not mutually exclusive.

One app may use one pattern at one interaction point, and another one at another interaction point.

Example: Launchpad when first open app to choose main functional area, then another pattern such as a menu or

option list for the next stage of interaction. Or a menu of options to get to a functional area, and then a breadcrumb

within the functional area.

Copyright © 2011-2017 by Billy S. Hollis. Please do not reproduce without permission. Clients for training are allowed to

reproduce this document only for use inside their organization.

To inquire about a class for your organization on design principles and design processes,

contact Billy: billyhollis@live.com

mailto:billyhollis@live.com

